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ABSTRACT

The fundamental mechanics of delamination in fiber composite laminates is

studied. Mathematical formulation of the problem is based on recently developed

laminate anisotropic elasticity theory and interlaminar fracture mechanics con-

cepts. Stress singularities and complete solution structures associated with

general composite delaminations are determined. For a fully open delamination with

traction-free surfaces, oscillatory stress singularities always appear, leading to

physically inadmissible field solutions. A refined model is introduced by con-

sidering a partially closed delamination with crack surfaces in finite-length

contact. Stress singularities associated with a partially closed delamination

having frictional crack-surface contact are determined, and are found to be dif-

ferent from the inverse square-root one of the frictionless-contact case. In the

case of a delamination with very small area of crack closure, a simplified model

having a square-root stress singularity is employed by taking the limit of the

partially closed delamination. The possible presence of logarithmic-type stress

singularity is examined; no logarithmic singularity of any kind is found in the

composite delamination problem. Numerical examples of dominant stress singular-

ities are shown for delaminations having crack-tip closure with different fric-

tional coefficients between general 81 and 02 graphite-epoxy composites.

PRECEDING PAGE SLAINK NOT FILMED
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Delamination hae been a problem of significant concern in the reliable

* design and analysis of advanced fiber composite laminatds. Separation of

composite liaidse, caused by high local interlaminar stress and low strength

aloag the ply Interface, can result in destruction of load transfer, reduction

of stiffness, and loss of struc'.oral, Integrity, leading to final structural.

and functional failure. F rost the sachanics point of view, delamation

involves Initiation and growth of macroscopic cracks between dissimilar,

strongly anisotropic solids. A rigorous mthemtical study of delamination is

recognized to be difficult, especially In a finite-dimensional fiber composite

laminate.* The complexities Include the inherent crack-tip singularity, the

effect of anisotropy of each constituent fiber lamina, and the abrupt change

of stiffness or ply orientation through the laminate thickness direction. In

addition, the three-dimensional state of stress and deformistiom associated

with the composite delamination always gives rise to a combined opening (mode

1), In-plane shearing (mode 11). and out-of-plane tearing nod. (mode 111)

fracture, which render the problem mthematically intractable in emay

cases. The mechanics of delamination in fiber composite laminates is,

therefore, not only of significant academic Interest bet of practical

Importance. In this paper, the first of two articles is a row, the

fundamental nature of stress singuLarities -a associated field solutions for

a delamination In a fiber composites laminate are Investigated.

Owing to the aforementioned complexities, studies on an interface crack

between dissimilar anisotropic meterials have been limited. Gotob (1) appears

to be the first to examine the two-dimensional problem of partial debooding

between dissimilr anisotropic plates under a plane stress condition.

Clements 12J has used Stroh's approach 131 to study the problem of an
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interface crack between two generally amLsocropic half-spaces. Willis (4) has

also conducted a two-dimensional stress analysis of a crack on the plane

interface of two bonded dissimilar half-spaces. The analysis hea been

etombined with the usual local form of Griffith's virtual work argument to give

a failure criterion, involving a stress concentration vector and specific

surface energy of the bonded interface. All of the asymptotic solutions

obtained in [1,2,4) have an oscillatory displacement field chat material

interpenetration on either side of the crack surface is predicted. Similar to

those found in the solutions for an interface crack between dissimilar

isotropic materials [5-91, these physically unreasonable results have led to

the argument of solution inadmissibility for the crack problem in dissimilar

anisotropic media. 7b correct the unsatisfactory feature of oscillatory

stress singularity, Wang and Chaoi (101 have recently reconsidered the problem

of an interface crack between dissimilar, strongly antsotropic fiber-composite

half-spaces by introducing a partially closed interface crack model, is which

the crack is not completely open and that its surfaces are in frictionless

contact near the tip. The forulation leads to a singular integral equation,

which Is solved nueically. Namerical results from this refined model [101

exhibit an inverse square-root stress singularity and, therefore, physically

meaningful fracture mechanics parameters can be defined consistently with

those in fracture problems of homogeneous materials [11-131 and in the model

given by Coaninou 114,151 for an interface crack between two Isotropic

mdia. Moreover, significantly global crack closure h been found [16 for

an interface crack between dissimilar anisotropic elastic half-spaces

subjected to mied-mode loading-a situation that is generally experienced by

a delsiation In finite dimensional fiber composite laminates.

LI
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in this paper, we employ lakhnltskii's complex-variable stress potentials

1171 In conjunction with an eigenfunction expansion method to examine the

mchanLcs and the mthematical solution structure for a deLaminstion vith

frictional crack-tip closure in a coeposite laminate. Based on the general

solution structure determined, an advanced numerical method using singular

finite elements Is then developed to study the detailed delamination behavior

in finite dimensional fiber compoite laminates vith any arbitrary

combinations of lamination parameters, geometric variables, and crack

dimensions. Owing to space limitation, the numerical method and the detailed

composite delalnation behavior are reported In an accompanying article [181.

In the next section, the problem definition and basic assumptions are

stated. Basic laminate anlsotropic elasticity equations and forUlation of

the composite delamination problem are introduced in Section 3. General

solution structures for asymptotic stress and displacement field@ are

obtained. Stress singularities associated vith an open interlainar crack and

vith a partially closed delamination tip vith frictional crack-surface contact

are determined respectively in Section 4. Influences of frictional

coefficients on delamination stress singularities are examined. A simplified

modl for a delamination with a very small area of crack-tip cloaure is also

introduced. The possibility of existence of additional singularities in

logarithmic foru in homogeneous and particular solutions is Investigated.

Results are presented for delsminations with different local crack-surface

traction boundary conditions in compoite laminates containing various fiber

orientations. The aigenvalues and associated stress singularities obtained in

this study provide the mst fundamental Information on complete solution

structures of delamination stress and deformation fields, and establish a

basis for formlation of the singular finite e.l.unts used in the next paper

7



(161 to study the detailed delaisation behavior in finite dimensional

composite vitb general Laiatlms and geontric variablos.
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The problem coneS -.4 here is a composite laminate (Fig. 1) composed of

unidirectional f iber--reinf orced plies of uniform thickness h1 ,l h2 s h3 o

be~. The composite o a fiLaite dimeion with a width equal to 2b. for

simplicity and without lose of generality, we restrict our attention to the

Case of symmetric compoeite laminates with fiber orientations

10102163OVee.%6210l11 Fly thicknsses are aleo symetric with respect to

the x-u plae, I.e., for each ply above the u-s pleas (y ), 0), there exists an

Identical ply with the sem ply thickness below the u-s plaow (y 4 0).

kiamination with a length a is assumed to occur is the form of an Interface

crack between dissimilar, strougly aIisotrnpic fiber-reinforced composite

lauWua with fiber orientations **, and %Si.

The composite laminate is aued to be subjected to tractions acting in

planes normal to the a-axis and dietrIbeted uniformly along the a-axis without

variation. tn the cae. that the finite dimensional composite lanate hes a

f inite length, axial load@sed smmeto are aesumed to act on the ends of the

compoite body. The composite lamnate is further assumead to be sufficiently

long that in the region away from the sno, end effects are negligible by

virtue of the Saint Veniant princi1ple. Consequently, the components of

stresses in the laminate are Independent of the u-axle The special case in

which all components of access"e and displacements in the composite are

Independent of the a is well-kows the generalined plan deformation

problem (171.

?he objectives of this study are to: (1) establish a mathematical bes

*for the mechanics of delamination baed on laminate elasticity theories and

interlaiar fracture mechanics concepts; (2) determine stress singularities

and associated solution structores for composite delemisatione with different

0b
U.I
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local crock-tIp deforuti coafiwratime; (3) obt&am a~totic stress aed

deforuetioe fields goversaog the fundainoaL bhawt~r of deLawisacioe; ead

(4) study the iaflueoces of various Lelmation ed material variables ecA as

fiber orteatation and crack-sucface frictioseal coeff tetests on the

delaaiaation stre..ss taJaritiee.
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WC. M Lum AIICIT Mis ME ~ UmMf

The development of the mechanics of composite delamination to based on

*recently established theories of anisotropic laminate elasticity (19,20,211

mod fracture mechanics concepts of interface cracks betvemen dissimilar,

strongly amiotropic composites 14,10,16,21). In this section, governing

partial dif ferential equations for composite laminate elasticity problem are

established first.* based on Iakhaitekii a coeplex-uariabLe stress potentials

1171. Goeneral solutions foe the laminate elasticity problem with interlaminar

cracks are Introduced. stress singlarities associated with a composite

delaminat ion heving howmooe local boundary conditions are defined.

Solution structures of asymptotic stress and displacemnt fields are

constructed for a delamination between dissimilar general fiber composite

Lownae Additional term of logarithmic form in the homogeneous and

particular solutions for the composite delaination problem are examined.

3.1 IMic sqmezin

The fundmental mceanics of delamination io a fiber-reinforced composite

leminate my be studied from the schemitics Illustrated in fig. 1. T1he

constitutive equations of each fiber-reinforced compoite lamina with

rectilinear anisotropy of a general form in the structural Cx-y-x) coordinates

are denoted by gssralised Mooke 'a law in contracteod notation as

C aSIj* (ij - 1,Z.3#**.,6), (1)

where the repeated subscript Indicates sinton, and Stj is a compliance

taer. The engineering Strains CIL io sq. I are defined in a Cartesian

coordinate System by
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x T V2 Ty = "3 z 0 ""

aw 3v 3w + 3u 3v u
4 ""yz £ 5 "zx 3" 3" 6 "xy +  (2)

where u, v, and w are displacement components. The stresses ai are defined in

an analogous manner in the Cartesian coordinate system. For a composite

laminate in the aforementioned loading condition, mathematical formulation for

this class of elastostatic problems can be made using the well-known

Lekhnitskii complex-variable stress potentials fi], F(xy) and T(x,y),

defined as
32F _2F 32 Fa . a , Txy 3 y

x 3y2  Y 3x2  xy ax ay

31 31

3? z , 0" (3)

Following the same procedure in [17,19], wr can easily obtain the following

system of partial differential equations for each anisotropic composite

lamina:

L3F + L2 - - 2A4 + AIS 34 - A2S35, (4a)

L 4F + L 3 - 0, (4b)

where 12, L3 and L4 are differential operators of the second, third, and

fourth orders which have the form:
12 32 - 32

L2 %44 - 2s45 ax ay + a y2

93 a33L$24 2+ $46)  ($14 56 5 + 3 9

3x3  3x2 3y 3x 3y2  3y

-34 34 a4 34
L4 M $22 - 2S26 + US12 + $66)  2S16 1- +  1S - (5)

3x4 3x3 3y 3x2 3y2 3x 3y3 3y4
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with
J S - St3 3JSS S (ij - 1,2,4,5,6). (6)

The constants A1 and A2 in Eqs. 4(a) and 4(b) characterize the bending of the

composite body in the x-z and y-z planes respectively, and A4 is the relative

angle of rotation about the z-axis.

Assume that external tractions on the lateral surface of the composite

cross section are given as T , T y and T The boundary conditions on the

lateral surface B are as follows:

x nx +X ny x

xy n + aI ny Ty. (7)

xZ nx +  TyZ ny TZ'

where ni are directional cosines of the bounding surface OB. The conditions

at the ends of the composite have the form:

f f "xz dx dy - ff -Cyz dx dy - O, ff oz dx dy - P ,
B B B

ffaz y dx dy - M1 0 ff oz x dx dy - M2, (8)~B

f (- y x-It'x y)d dy - M,
B

where the integrals are taken over the entire area of the cross section B, and

Pz, Ml, M2, and Ht are applied force, bending moments, and twisting moment at

ends of the composite, respectively.

3.2 Gemeral Solutlons

The general solutions for the governing differential equations have been

shown (171 to have the form as

0
VI
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6
F- Fk(Zk) + F, (9)

k-I

6
I- N mFj(Zk) + To (10)k=l

where the complex variables Zk are defined as Zk - x + pk y; F and T0 are

particular solutions of the nonhomogeneous system; the prime (') denotes

differentiation of the analytical functions Fk with respect to their

arguments, and pk are roots of the following algebraic characteristic

equation:

4(P)12(11) 3 ()=0 (Z)-

with i2 ( p )  S55112 - 2S 4 51" + S4 4 - (12a)

13(I) 'S15" - 0Sl4 + 56 ) g2 + (25 +  46 - %24' (12b)

14(p) W S - 2 169 + (2 12 + t 66)2 - 226 22' (12c)

The ntk in Eq. 10 are complex numbers equal to

N - - 13(Pk)/12(Pk) - - 1 4( tk)/13(Pk)" (13)

We now choose the form of Fk(Zk) as

%kZ~ - j /[ +2(6+1)(6+2)). (14)
(Z)- (Ik,"

where Ck and 6 are arbitrary complex constants to be determined. Substituting

Eq. 14 into Eqs. 3, 9 and 10, we obtain the homogeneous solutions for stress

and displacement components in polar coordinates (r-*-z) as follows:



(h) z Hu'c Fi) .rhu~c
(C H Z, (C +lk' * k 2k4Ck+3 2kk))

k-

(h) 3  6C~Z _ 4 ) (15)3
4 kl I  k k+33kk rr kl 4kZkiCk+34kZk,

3 3
(h) . I -- e)

rh - (Crz k kHk k+ C k+3 k k)

~(h) I H +151 6k (+1 )1

r=CdZ + Ck 3 ~k )(+11
rz- k

auh r k [Ck~k 1+(60 + Ck+3  Zk

u(h) -(+I +6+1 41/61).(6

3

u(h)" [CkHskZ k+ (6+1 ) + Ck+ 3  Sk z + I /(s+ I)]'z n k-k3k-4'(+)

where Zk = r(eio + 'el)/(i + Ak). (17a)

X k . (1 + ill)/(0 - iuk). (17b)

The coefficients Hik(4) (1 - 1,2,3,...,8; k - 1,2,3) are known functions

of O, nk' Uk, and SiJp defined in Appendix 1o

The complete laminate elasticity solutions for the composite mechanics

problem can be written as

(Y - O1(h) + O(P (1. - 1,2,3,4,5.6), (18a)

- (h) + U(P (j - 1,2.3), (18b)

where (p) and u(P) are particular solutions associated with the loading

condition of each individual case studied. The expressions for oah) and a(P

can be obtained as
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a h )  -3j (h)/S (18)

and

'J p ) - (A 3j 33 (j - 1,2,4,5,6). (led)

3.3 Asymptotic Stress and tsplacemeat Lialds

Using Eqs. 15 and 16 and applying local hcomogeneous traction boundary

conditions on crack surfaces bBe (Fig. 2) and interface continuity (matching)

conditions along FBI , we obtain a system of twelve homogeneous linear

equations in Ca)(a - a, a + 1), i.e.,

D C - 0, (19)

where D(6) is a 12 x 12 coefficient matrix involving 6 in a transcendental

form, and C is an unknown 12 x I column eigenvector. The nontrivial solution

for C requires that the determinant of the coefficient matrix vanishes, i.e.,

ID(6)I - 0. (20)

This leads to a standard eigenvalue problem, and the 6 can be determined from

the transcendental characteristic equation. Standard numerical methods such

as the HUller method [221 with the aid of a digital computer are needed for

this purpose. The eigenvalues determined from Eq. 20 provide important

information on the fundamental structure of stress and displacement solutions

for the composite delamination problem. Furthermore, the eigenvalues 6n which

satisfy the following condition:

-1 < e[6 n] < 0 (21)

characterize the fundamental nature of stress singularities and provide the

asymptotic stress and deformation fields at the delamination tip. In the case
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that local crack surface tractions are nonvanishing, for example, the crack

closure problem, Eq. 19 needs to be modified. Delasinations having crack-tip

deformation configurations with nonvanishing local traction boundary

conditions are discussed in detail in the next section.

For a delamination problem in composite laminates with general lamination

variables and fiber orientations, the algebraic multiplicity of the

eigenvalues determined from Eq. 20 may give rise to additional terms of the
6 1

logarithmic form Zkn (In Zk) m in the homogeneous solution, as first suggested

by Dempsey and Sinclair [23,241. In this situation, the following terms my

also be a part of the homogeneous solution in addition to Eqs. 15 and 16:

Oh) 6 a m 6n ( 1.2.4.5,6). (22a)
I I T= Ck Rik ZkIk=I 86 m

n

u~, 6 1 (6n+1)
u(h) CI H(j5 Zk n /(6 n+1)] ( - 1,2,3), (22b)

k:1 86 a +5)kk

n

where 1. is the order of the logarithmic multiplier in the eigenfunction

corresponding to eigenvalue 6, and is related to the property of the D

matrix by Im - M-(N-R), in which H is the algebraic multiplicity of the root

6n, and N and R are the order and the rank of the D matrix, respectively. The

presence of the logarithmic terms, Eqs. 22(a) and 22(b), in the homogeneous

solution equires a nontrivial solution for Ck . Detailed discussion of the

conditions for the existence of Eqs. 22(a) and 22(b) in the composite

delamination problem can be found in (251.

In the construction of asymptotic solutions for delamination stress and

displacement fields, the particular solution for the system of governing

differential equations also contributes to the complete solution. It is

apparent that the structure of the particular solution is related to the
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applied loading and deformation of the delaLnated composite. For the

convenience of further developments, we consider here the case of a composite

laminate with delaminations subjected to a uniform axial stretching, i.e.,

rz a e.. Under this circumstance, it has been shown 1251 that the particular

solution has a similar form as Eqs. 22(a) and 22(b),

1o 6 6
i[p ) " a + C1y( . P) Hik kn)] -0 (i - 1,2,4,5,6), (23a)6ok-I n

n

( °) +[(P) HJ) 1 /+(6 +1))]6n. 0  (j - 1,2,3), (23b)
, %j o60k-I i (J5) k n

n

where the components 0oi and uoj are known quantities determined by the remote

loading condition. The io In Eqs. 23(a) and 23(b) is the order of the

logarithmic eigenfunction at 6n - 0 and is related to the maltiplicity Mo of

the root 6 - 0 and the rank and the order of the matrix D by t o - )o-(N-R).

(Note that Eqs. 23(a) and 23(b) contain logarithmic term of the formsA

(in Zk) (In Zk)2. ... (in Zk) 0.1 The necessary and sufficient conditions

for the existence of the particular solution, Eqs. 23(a) and 23(b), can be

shown [251 as

Z(L) ( (24)

for every left eigenvector Ch of D (0) defined In (25], where p* is a

loading vector resulting from a., and Uoj, and the dot (.) denotes the inner

product of the two column vectors, In the case that Eq. 24 does not hold, one

needs to consider the logarithmic term of a higher order through a higher-
(+1) (1o+1)

order differentiation a /8 n  in Eqs. 23(a) and 23(b). A detailed

discussion on this is given in Reference 25.
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Based on the general solution structures given in Eqs. 15, 16, 22 and 23.

it is possible at this point to examine the detailed nature of stress

singularity associated with a delamination in a f iber-reinfoarced composite

laminate. Because of the local nature of the stress singularity, we focus our

attention on the crack-tip region of a delamination between the %th and

(m+1)th laminae with fiber orientation*s9 and 9,+,. respectively. both fully

open and partially closed delaminations are considered. In the case of a

delamination with an extremely small area of crack-tip closure, a simplified

model by taking the limiting case of a partially closed crack is introduced.

4.1 Delamination with Traction-Free (FulIly Open) Surfaces

Assuming that the crack surf aces are fully open and that the Laterface

6,between the plies is perfectly bonded along r > 0 as shown in Fig. 2, vs

can ismediately introduce the local traction-free boundary conditions along

the dulamination surfaces 4 * it,

v- s(r.%) - v4) (r,ii) - 0, (25a)

,-i) -c 1 )(r,-I) a .+)(,w - 0. (25b)

The continuity (or matching) conditions of interlaminar stresses and

displacements along the ply interface $ - 0 read as follows:

(a~(rO), ~(rO).~~r,))- (o (m+l)(r.0),t(1+I)(r.O).rc(7+l)(r.O)), (25c)

{4mU)(r,O) ,u~ffi(r ,0).u~m(r,O)) - (u~m'I (r,0),u~m+1) (r.0).u ( 1+ (r.0)). (25d)

More explicitly, the local homogeneous boundary conditions, Eqs. 25(a) and

25(b). and continuity conditions, Eqs. 25(c) and 25(d), have the forms as
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3 (C(U) Him)(X) [ )(a) 6 [S))(r)16 . O. (26a)k Tk ik + +3 Rik(i)I () )-0k-l

3 (, .1) (10+I)( t ,,+1) (12,) (,U,+1 ) 6T (i Rik~ (-)1 k (1) k+3 Rik k .wJ)-0. (26b)
k-I

k3 "( 'jk + %+73 jk Ck k jk

(I - 1,2,3; j - 1.2.3,4,5,6), (26c)

where

(a)(M (eI# + ) - + ()). (2(i()

and

r(a. i r). () r d). (a) r(G) P(d) r(a). q() r(a) (a)

A ~i r~A,4 A~ % 4~km k 5k k ' 6k k

(a - a, W+1). (26e)

Equations 26(a), 26(b) and 26(c) consist of a syster of twelve
homogeneous linear algebraic equations in Ci and .i The existence of a

nontrivial solution requires that Eq. 20 holds, leading to a standard

eigenvalue problem. The solution for 6n can be obtained easily from Eq. 20

and shown to have the form,

6- (n - 2) iy, (0 -/2), aV2 ' , (27)

where n a 0,1,2,...-; and y is r constant related to material elastic

properties, aJ )nd S , of the adjacent mth and (&+I)th fiber-compositeLii ii

laminae. In general, the value of y needs to be determined numerically from

Eq. 20, which involves 65 In a transcendental form. It is important to note

that the eigenvalues of 6 n obtained from Eq. 27 give critically important

information on the fundamental structure of stress and displacement solutions
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for delaninated. composite materials. We remark that the elgenvalues

(n- Y/2) * ly and (n- V/2) are single roots and that all the Integers, a,

Including zero, have an algebraic mltiplicity of 3 in general. As mentioned

In the preceding section, the values of 6n which meet the condition Eq. 21

* provide the exact strength (or order) of the Inherently stress singularity for

tht asymptotic stress solution at the delamination crack tip. The possible

presence of weaker singularities and related ters in logarithmic form as
A 6 .1

discussed in Section 3.3, i.e., (In Zk) and/or Zkn(ln Zk ',In the

homogeneous solution as well as in the particular solution will he discussed

later.

For the purpose of illustration, consider a delamination located along

the ply interface of 0/90* graphite-epoxy composite laminae (Fig. 2). The

following material elastic constants * of high-modulus unidirectional graphite-

epoxy are used in the computation:

IL - 20 x 106 psi (137.9 Us),

Ea K2  2.1 x [06 psi (14.48 GPa),

r1LT - rz - 0.85 x 106 psi (5.86 GPa), (26)

'OLT 0 v "T',z - 0.21.

Ths ply elastic constants are used in the computation here only to
Illustrate the general nature of the current problem. (These constants are
selected for historical reasons because they have been used in many previous
studies of the mechanics of composite laminates 119,26,271.) Numerical
results based on real material constants of the comonly employed T300/5208
graphite-epoxy with

SL 19.5 x 106 psi (134.45 GP&), ET - Ez 1.48 x 106 psi (10.2 GP&),
GLT - GU~ - 0.8 x 106 psi (5.52 G~a), G~m 0.49 x 106 psi (3.36 We),
vLT a v * 0.3, vTx a 0.49, (28a)

are also given in Tables I and 2 for comparison. The differences between the
two cases are generally very small.
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where the subscripts L, T and z denote the fiber, transverse and thickness

directions of the composite lamina, respectively. The first three elgenvalues

61(1 - 1.2,3) which satisfy the aforementioned constraint condition Eq. 21 are

given in Table 1 to illustrate the exact strenLh of the stress singularity

associated with the delamination. To demonstrate further the general

characteristics of the stress singularities for delasination, results for an

interlamlnar crack between 30*/0 graphite-epoxy composites with the same ply

properties are also shown (Table 2) for various fiber orientations O's. from

Tables 1 and 2, we observe that a fully opened delamnatton between dissimilar

highly anisotropic laminae always possesses three distinct stress

singularities, i.e., a pair of complex conJugates, 61,2 - -1/2 iy , an a

real constant, 63 - -0.5. This situation is unique and apparently different

from the cases of an interface crack between two dissimilar isotropic media or

orthotropic solids in that the three distinct dominant stress singularities,

61. 62 and 63, always exist simultaneously In the present fiber-composLte

delamination problem. In the special cases when a delamination is located in

the 90*/90* or 30*/30° composite system the classical Inverse square-root

singularity for crack-tip stresses is fully recovered as shown in the Tables,

because the composite laminate becomes unidirectional. We note here that the

imaginary part of 61 and 62, i.e., the value of y, is generally very small as

compared with the real pert of 6i In all cases studied.

4.2 alaminatloo with Crack-Tip Clasre

from Eq. 27 and from the results shown In Tables I and 2, it Is clearly

seen that the asymptotic delaminatio stress field in dissimilar anisotropic

composites possesses the well-known oscillatory singularities. The associated

displacement field also exhibits oscillatory characteristics, leading to

controversial crack-surface Interpenetration or overlapping, which is
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physically inadmissible. Similar results have also bees noted by several

investigators in studying an interface crack between dissimilar Isotropic

materials. In recent studies, Wang and Choi 110,161 have sheen that for

delamination between dissimilar, strongly anisotropLc fiber composites with

certain combinations of lauar elastic properties, ply orientations, and

loading conditions, global crack surface closure my occur. Under these

circumstances, interlaminar crack-surface contact or closure needs to be

considered.

Consider the case that a delamination a is located between the mth and

(u+l)th lamnae and a portion of the crack surface, o, is closed as shown in

Fig. 3. Frictional coefficients associated with T1. and tr# on the interface

0 - 0 are denoted by fs and fr*' respectively. An exact analytictl complete

elasticity solution for the delaminatton problem with crack closure is

generally difficult to obtain because the unknown contact stress distributions

along the crack-closure region need to be determined as a part of the final

solution [10,14J. However, the local stress singulartties, asymptotic field

solutions, and associated characteristics can still be detetained exactly by

using the same procedure discussed in Section 4.1 but with so-"

modificattons. Referring to Fig. 3 for a partially closed delaminacion.

instead of using qs. 25(a) and 25(b) we can introduce the local boundary

conditions in the crack-closure region (- c c r 0) as followes:

a()(r.1) o (10+0(r.-) -0. )(r. ( ).-) .

C (r,) ) -(*+ -(r.-,) 0, ,W+ (r.-w) - 0,a,, (r#
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,m) Cr,') 'ft Cr0'). (29)

(T - 0, m41).
Cr.')rn-f, *:Crn),.

Along the ply interface a 0, the s continuity condlrions Iqs. 25(c) and
(12) nd(o)

25(d) for o a aj (a - of m+0 are applicable.

Using Eqs. 25 and 29 and folloving the sam procedure given in Section

4.1, we can immdiately determine the elgeovalues 60 for a compoeite

delsmin tion with crack-tip closure. The numerical example of a delasinatton

located along the Interface of /-4 g#raphite-epoxy compote* is studied here

first. Stress singularities associated with the partially closed deLaination

crack tip with different values of fricteoa coefficien t s f Iand f#2 are

shown in Table 3. The crack-tip stress singularity is found to be always -0.5

with an algebraic multiplicity of 2 (i.e., double roots 61 - 42 - -0.5) for

the delasnstion having crack surfaces in frictionlees contact (i.e.. fr#

f *s a 0). In fact, the Inverse square-root stress singularity. 61 a 62 a

-0.5. is found for all delasinated G/-4 fiber composites with frictionless

crack-surface contact. In the cses of frt * 0 and/or ft3 0 0, stress

singularittes always possess en invariant coestast &I a -0.5 (single root) as

in the aforementioned frictionless contact case, and a 62 (with 62 0 -0.5,

single root), which depends on values of the frictional coefficients (Tables 3

and 4). In Table 3, values of 62 for all delaminated 0/4 fiber composite@

studied are observed to he slightly larger than -0.5, when fog > 0 is

considered. That is, frictional contributions lead to a weaker delamoatLon

tress singularity 62 than thet t a frictionless contact case and in a

conventional homogeneous open crack case. We note here that for a

delamination between $/-# graphte-epoxy composite@, the stress sinularities
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aM always imdapeadee of the vale of the frtctional coefficient fr* because

of the -- stry (and antiymetry) of coeponens in elastic stiffness matrices

d the I ad -4 ples and the decouplini of :T from e7 and Ty7 tn the

fomilatton. This pbsnoonm Lo clearly seea in Table 3, where 61 is always

-0.5 and 62 differs ft,; -0.5 gradually s the value of f#i tncreases. Note

further that deviattons of 62 in the frictiomal contact cases froe the

€evenclonal equare-root singularit are rather small for al1 /-S graphite-

epe7 del* Alnattoe problem.

Scress sogularttes are al" determined for deLaminationas in mare

$emeral Casm of 01/02 fiber compositee with *1 0 o2. For illustration, the

results of a deladmation betwee 30'/90 graphite-poxy coeposites are

presented In Table 4 to: various values of f sC# &od f,. It is seen from the

Table that the double root* 61 - 62 - -0.5 also appear for a delamination in

91/92 coePoeites with crack eurfacee in frtctionlese Coact (fr0 " fox " 0).

8waver, tn the cases of a delamination with crack surfaces in frictional

macact, 62 is apparently lot l oced by the values of both f rand f4z. In

Table A, values of 82 for the partially closed delaination in 30*/90'

graphite-opoxy compoites with different fr# and f#a are observed to be

mller them the classical square-root stress singularity. Thus, 62 can be

either greater or smaller than the coeventlomaL inverse square-root

singularity, depeeding upon the values of 4, said fjx and fiber arientations

ad the compooites. Owing to the complex algebraic structure of the

trameceodental characteristic equation. 8q. 20, it is generally not possible

to predict in explicit form whether 62 ) -0.5 or 62 ( -0.5 for a delamination

with crack surfacea t frictional contact without selving the transcendental

e4mation numerically. Ie remark that to the case of a delamination with crack

serfaces in frictionless contact between dissillar anisotropic utdia, the
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dominant stress singularity, 6 - -0.5, has also been determined independently

by using a singular integral equation approach in 110,16). Furthermore, a

similar phenomenon of stress singularity 8 > -0.5 or 6 < -0.5 has been

observed in studying the interface crack between dissimilar isotropic media

with crack surfaces in frictional contact [28].

4.3 Delamination with a Very Small area of Crack-Tip Closure

The delamination with open crack surfaces between dissimilar fiber

composites has been shown mathematically in Section 4.1 to possess

controversial oscillatory crack-tip stress and displacement fields. This

abnormality is thought to be artifacts resulting from the method of approach

by using eigenfunction expansion in the formulation and solution. As first

pointed out by England (71, Malyshev et al. (61, and later by Wang and Choi

[101, the region of oscillatory soltions for a delamination with open crack

surfaces in a nominal tensile field is generally extremely small in comparison

with the size of the interface crack and this very localized abnormality may

not be significant in practical terms of linear fracture mechanics. In fact,

using the partially closed crack model, Wang and Choi (101 have shown that a

composite delamination in a tensile field has an extremely small crack-tip

closure with c/a - 0(10-6). A simplified model which disregards the small

closure (or oscillatory) region and approximates the asymptotic field by an

inverse square-root stress singularity is, therefore, proposed for this

situation and shown to provide excellent results comparing with those

determined by using a partially closed crack model [10].

Under certain loading conditions other than pure tension, however, an

interl minar crack may also possess a very small area of crack-tip closure,

depending upon loading modes and material elastic properties of the dissimilar

composite laminae (161. A simplified solution for this case can be obtained
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by taking the limit of the crack-closure length, i.e., c - 0, in the results

derived from a partially closed delamination. In particular, the delamination

. stress singularity can be taken directly from the partially closed crack model

(with frictionless crack surface contact) as an inverse square-root one.

Mathematically, this is equivalent to finding an analytical solution for a

fully open crack by following the same formulation and procedure for a

partially closed crack case with Infinitesimal closure length, and the

approximation introduced has the effect of smoothing the oscillatory

singularity to an inverse square-root singularity for the composite

delamination. Therefore, interlaminar stress intensity factors and strain

energy release rates can be defined in a manner consistent with those for a

homogeneous crack and for the refined model of an interface crack between

dissimilar isotropic solids introduced by Comninou 1141. As will be shown

later [181, this simplification leads to a very effective and efficient

approach to the complex problem of delamination with a fully open crack tip or

with a very small area of crack-tip closure, and provides meaningful

information on the fundamental mechanics of delamination problems in composite

laminates under general loading conditions.

4.4 logarithmic Stress Singularities

As mentioned in Section 3 that besides the power-type stress

singularities given in Sections 4.1, 4.2 and 4.3 for various conditions in the

crack-tip region, weak logarithmic-type singularities may also appear in the

homogeneous and particular solutions for the delamination stress field. Since

the particular solution is related to the remote loadiag applied to the

delaminated composite, it has to be considered and constructed for each

individual case. To study the possible presence of the logarithmic stress

singularities in a delamination mechanics problem, we consider a symmetric

S .4
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composite laminate subjected to uniform in-plane stretching with

Cz - e. for simplicity and without loss of generality. Also, we restrict our

attention at this point to delaminations located in the following three

composite systems: 8/-0, 8/0', and 8/90* graphite-epoxy composites. Based on

the preceding theoretical developments and che conditions for the presence of

the logarithmic term given in [251, we address each individual case

separately.

(1) DelaaLnation between 0/-8 composites (9 * 0* and 90*)

Numerical calculations by using the ply elastic constants given in

Eq. 28 provide the following:

N - 12, R - 9, K - 3 (n - integer), (30a)

N - 12, R - 11, K - I (n * integer). (30b)

Applying both Eq. 30(a) and Eq. 30(b) to the condition I - H-(N-R), we obtain

Lm - 0. Thus, logarithmic terms of the form Zkn(In Zk) a with i1 ) I do not

appear in the homogeneous solution for this class of problems.

Also, carrying out the computations of constructing the left

eigenvector C and the loading vector p we find that, for all three sets

of *(L) at 6n - 0 in this case, Equation 24 is satisfied identically.
(1o+1)

Therefore, logarithmic terms of the form (In Zk) do not occur in the

particular solution either.

(2) Delamination between 8/0 or 9/90* composites (8 * 00 and 900)

In these two cases, following the same procedure and computations as

discussed in (1) but with minor modifications, we obtain similar results as

those in the 0/-0 case, i.e.,

N - 12, R - 9, and H a 3, (On - integer) (31a)

N - 12, R - 11, and M - 1, O n integer) (31b)
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and, also, 1., 0. Moreover, Eq. 24 also holds for this problem. Thus, we

conclude that no logarithmic singularities of any kind would appear in the

asymptotic solutions for delamination in 0/90* and 8/00 composites; only
6

power-type singularities Zkn occur in these problems.

We further remark that, in fact, it has been shown in (251 that no

logarithmic term of any kind would occur in the solutions for a general case

of a delamination located between 8I and 02 fiber composites with 81 and 02

being any arbitrary fiber orientations.
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5. SOIIT AND C LJSIOUS

The mechanics of delamination in fiber composite laminates has been

studied. Formulation of the problem is based on Lekhnitskii's complex-

variable stress potentials and basic relationships in laminate elasticity

theory for anisotropic fiber composites. The eigenfunction expansion method

used in this study appears to be a suitable approach to determine delamination

stress singularities and fundamental structures of stress and deformation

field solutions. Stress singularities for a delamination are found to be

related to adjacent ply material properties ann local traction boundary

conditions. Numerical results for interlaminar cracks in commonly used

graphite-epoxy compoeites with different fiber orientations and crack-tip

conditions are shown to illustrate the basic nature of stress singularities

and general solutions for the composite delaaination problem. Based on the

information obtained, the following conclusions may be reached:

(1) Assuming the delaminstion is fully open and free from surface

traction, we find that delamination stress singularities always possess an

oscillatory form by simultaneous presence of three distinct eigenvalues,

-1/2 +iy, -
1/2 -iy, and -Y2. The oscillatory stress singularities and field

solutions for composite delamination are physically inadmissible because of

interpenetration of crack-surface displacements.

(2) For a delamination with partially closed crack surfaces in

frictionless contact, the present eigenfunction expansion approach always

gives an eigenvalue 6 - -1/2 with an algebraic multiplicity of two (i.e.,

double roots), indicating the classical square-root stress singularity is

recovered in the closed crack case.
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(3) In the case of a delamnation with crack surfaces in frictional

contact, crack-tip stress singularitles depend not only on material elastic

constants and fiber orientations of adjacent plies but also on frictional

coefficients fr# and f#z along the delamnation surface.

(4) The crack-surface friction may lead to either a stronger or weaker

stress singularity than the conventional inverse square-root one, depending

upon fiber orientations of the adjacent plies. Present numerical results, for

example, show that a weaker stress singularity, i.e., 0 > 8 > -/2 , occurs for

a delamination between any e and -e fiber composites, but a stronger

singularity, i.e., -V2 > 6 > -1, occurs for a delamination between 300 and

90' composites, if fr# > 0 and f*z > 0.

(5) In the situation that the delamination contains a very small area of

-6crack-surface closure (e.g., c < 10 a), a simplified model with the crack-tip

stress field having an inverse square-root stress singularity, as determined

by finding the solution from the limiting case of a partially closed crack

solution, is suggested and later used for solving the complete boundary value

problem.

(6) Examining the multiplicity of eigenvalues and the rank and order of

the coefficient matrix in the ei;jenfunction solution, we find that no

logarithmic stress singularities of any kind would appear in the homogeneous

and particular solutions for the composite delamination prob
1 , a; only power-

type singularities of the form Zk could occur.

(7) After determining of all the eigenvalues for each individual

delamination case, general solution structures for composite deformation and

stress fields can be established imdiately. Numerical methods such as the

singular finite-element technique, which can incorporate exact delamination

stress singularities in the element formulation, can be easily developed to
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solve the complete boundary-value problem for delaminations in composite

laminates with any arbitrary combinations of lamination, geometric, and crack

variables. One of such methods employing displacement-based singular crack-

tip elements is given in the associated paper [18.

L.



29

6. AmOII NTS

The research york described in this paper was supported in part by

National Aeronautics and Space Administration-Langley Research Center (NASA-

L&RC), Hampton, VA under Grant NAG 1-286. The authors are grateful to

Ore. T. K. O'Brien and N. Johnston of NASA-LaRC for their support and fruitful

discussion.



30

7. uuuuin

[I) Gotoh, M., "Some Problems of Bonded Anisotropic Plates with Cracks
along the Bonds," Internationat Journal of Fracture, Vol. 3, 1967,
pp. 253-264.

[21 Clements, D. L., "A Crack between Dissimilar Anixotropic Media,"
rnternationat Journal of Engineering Science, Vol. 9, 1971, pp. 257-
263.

[31 Stroh, A. N., "Dislocation and Cracks in Anisotropic Elasticity,"
Philosophicaz Algasine, Vol. 3, 1958, pp. 625-646.

[4) Willis, J. R., "Fracture Mechanics of Interfacial Cracks," Journal of
Mechanics and Physics of Solids, Vol. 19, 1971, pp. 353-368.

151 Williams, M. L., "The Stresses Around a Fault or Crack in Dissimilar
Media," Bulletin of the Seismology Society of Amrica, Vol. 49, 1959,
pp. 199-204.

[61 Nalyshev, B. M. and Salganik, R. L., "The Strength of Adhesive Joints
Using the Theory of Fracture," International Journal of Frature,
Vol. 1, 1965, pp. 114-128.

[7) England, A. H., "A Crack between Dissimilar Media," ASMA Journal of
Applied Mechanic., Vol. 32, 1965, pp. 400-402.

(81 Erdogan, F., "Stress Distribution in Bonded Dissimilar Materials with
Cracks," ASM Journal of Applied mechanics, Vol. 32, 1965, pp. 403-
410.

(91 Rice, J. R. and Sih, G. C., "Plane Problem of Cracks in Dissimilar
Media," ASMAf Jou'rl of Applied Mechanics, Vol. 32, 1965, pp. 418-
423.

(101 Wang, S. S. and Choi, I., "The Interface Crack between Dissimilar
Anisotropic Composite Materials," ASW Journal of Applied Mechanics,
Vol. 50, 1983, pp. 169-178.

[111 Irwin, G. I., "Analysis of Stresses and Strain Near the End of a
Crack Traversing a Plate," ASW Journal of Applied mechanics, Vol.
24, 1957, pp. 361-364.

(121 Paris, P. C. and Sih, G. C., "Stress Analysis of Cracks," AS7N
Special Technic.al Pubication 38, American Society for Testing and
Materials, 1965, pp. 30-82.

(131 Sih, G. C., Paris, P. C. and Irwin, G. R., "On Cracks in
Rectilinearly Anisotropic Bodies," Interiational Journal of Fracture,
Vol. 1, 1965, pp. 189-202.

[141 Cominou, N., "The Interface Crack," ASN Journal of Applied
Mechanics, Vol. 44, 1977, 6 1.!-636.



31

[151 Cogninou, M., "The Interface Crack in a Shear Field," ASN9 Jow"'a
of Applied Meohanios, Vol. 45, 1978, pp. 287-290.

[161 Wang, S. S. and Chol, I., "The Interface Crack Behavior in DissLilar
Anisotropic Composites under Nixed-Node Loading," AS Jou.nal. of
Applied Abohatiae, Vol. 50, 1983, pp. 179-183.

[171 Lekhnitskli, S. G., Thoi' of E osticity of an Aniaotoo piElastic
Body. Holden-Day, Inc., San Francisco, CA, 1963.

118) Wang, S. S. and Choi. 1. "The Mechanics of Dela ination in Fiber-
Reinforced Composite Materials , Part I - Delamination Behavior
and Fracture Mechanics Paramters," NASA CR-172270, N-vember 1983.

[191 Wang, S. S. and Choi, I. "Boundary-Layer Effects in Composite
Laminates: Part I - Free-Edge Stress Singularities; Part 11 - Free-
Edge Stress Solutions and Basic Characteristics; ASPEN Journal of
Applied Ab anics, Vol. 49, 1982, pp. 548-560.

[201 Wang, S. S., "Elasticity Solutions for a Class of Composite Laminate
Problems vith Stress Singularities," in Mohanisos of Compoite
Matez.wat, (Peooedingo of ZUAM Sipioeum on Mechanics of Composite
Mate~als, Blacksburg. fA, Aug. 16-19, 1982), Z. Hashin and C. T.
erakovich, Ede., Pergamon Press, NY, 1983, pp. 259-281.

121) Wang, S. S., "Edge Delaaination In Angle-Ply Composite Laminates,"
NASA Contract Report NASA-C-165439, NASA-Levis Research Center,
Cleveland, OR, 1981; also ANA Journal, Vol. 21, No. 11, 1983.

(221 Muller, D. E., "A Method for Solving Algebraic Equations Using an
Automatic Computer," Vathenatical Tables and Computations, Vol. 20,
Oct. 1956, pp. 208-215.

(231 Dempsey, J. P. and Sinclair, G. B., "On the Stress Singularities in
the Plane Elasticity of the Composite Wedge," Journal of la ticity,
Vol. 9, No. 4, 1919, pp. 373-391.

(241 Dempsey, J. P. and Sinclair, G. B., "On the Singular Behavior at the
Vertex of a 3Imaterial Wedge, Journal of R aitioity, Vol. 11, No. 3,
July 1981, pp. 317-327.

1251 Wang, S. S., In, S. and Choi, I., "AayuptotLc Solutions and
Associated Stress Singularities for AnIsotropic Fiber Composite
Laminates," submitted to ASNI Journal of Applied Mohanioe, November
1983.

1261 Pipes, R. B. and Pagano, N. J., "Interlaminar Stresses in Composite
Laminates under uniform Axial Extension," Journal of Composite
MAteriats, Vol. 4., 1970, pp. 538-548.

I"



32

1271 O'Irien, T. K., *Characterization of Delamlnation Onset and Growth in
a Composite Luniates," Damge in Co"m1.e MztSP ar , AST' .STP ?75,
K. L. Reifsnider, Ed., American Society for Testing and Materials,
1982, pp. 140-167.

[281 Comninou, K., "Incerfacial Crock with Friction in the Contact Zone,"
ASN Jour',at of Apptied Mechanics, Vol. 44, No. 4, 1977, pp. 780-781.



33

TABLE 1

DOMINANT STRESS SINGULARITIES FOR DELAMINATION
BETWEEN 0/90* GRAPHITE-EPOXY COMPOSITES

0 62 63

00t  -0.5 + 0.051101" -0.5 - 0.051101' -0.5
(-0.5 + 0.032924') (-0.5 - 0.032924") (-0.5)

150 -0.5 + 0.050349' -0.5 - 0.050349' -0.5
(-0.5 + 0.032448.") (-0.5 - 0.03248'1-' (-0.5)

300 -0.5 + 0.045L38" -0.5 - 0.045138i -0.5
(-0.5 + 0.025764') (-0.5 - 0.025764:) (-0.5)

45' -0.5 + 0.034504* -1.5 - 0.0345041 -0.5
(-0.5 + 0.015604i) (-0.5 - 0.01.5604') (-0.5)

60" -0.3 + 0.021119" -. 5 - 0.021119. -0.5
(-0.5 + 0.0080671) (-0.5 - 0.008067") (-0.5)

75' -0.5 + 0.008899" -0.5 - 0.008899' -0.3
(-0.3 + 0.004265") (-).5 - 0.004265") (-0.5)

90, -0.5 -0.5 -0.5
(-,0.3) (-').5) (-0.5)

*1'alues in the parentheses are for t300,'5280 4raphite-epoxy with laminar

elastic constants given in Eq. 28(a).

These elgenvalues are for 0*;90* and 901/90" composites in a general loading
condition. In the cases of 0"/90' and 901/90' composites under uniform
stretching z a 0. - -0.5 does not appear because of : y 0 and
being decoupled from other stress componencs.
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TABLE 2

DONINAPT STRESS SINGULARITIES * FOR DELAMMATION
52r7WR1 300/0 GRAMIUTE-EPOXT COxITS

a 6 62 63

0* -0.5 + 0.0124511 -0.5 - 0.012451i -0.5
(-0.5 + 0.009456i) (-0.5 - 0.009456) (-0.5)

iSO -0.5 + 0.0104911 -0.5 - 0.010491i -0.5
(-0.5 + 0.0079201) (-0.5 - 0.0079201) (-0.5)

30* -0.5 -0.5 -0.5
(-0.5) (-0.5) (-0.5)

45* -0.5 + 0.0159681 -0.5 - 0.015966i -0.5
(-0.5 + 0.011606) (-0.5 - 0.0116051) (-0.5)

60@ -0.5 + 0.030943i -0.5 - 0.030943i -0.5
(-0.5 + 0.020"1) (-0.5 - 0.020441) (-0.5)

750 -0.5 + 0.0410301 -0.5 - 0.0410301 -0.5
(-0.5 + 0.024664) (-0.5 - 0.0246" ) (-0.5)

900 -0.5 + 0.0451381 -0.5 - 0.045138i -0.5
(-0.5 + 0.02476A) (-0.5 - 0.025764i) (-0.5)

*Values in the parentheses are for T300/5280 raphite-epoxy with Lsmaac
elastic properties given in Eq. 28(a).

L
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TABLE 3

OWNMIANT STIMES SINGULAIITIES* FOR IZL.KNATION
WITHR CUM-TIP l,,U1 IN /-9 GUPITE-EPOXY C0JOHSITES

150 300 4S0 60. 75*

0.0 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5 -0.5 -0.5 -0.5 -0.5

0.2 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4994 -0.4962 -0.4940 -0.4941 -0.4964

0.4 -0.5 -0.5 -0.5 -0.5 -0.5
-.0.4977 -0.4923 -0. 41L -0.4681 -0.4928

0.6 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4965 -0.4884 -0.4821 -0.4822 -0.4892

0.8 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4954 -0.4846 -0.4762 -0.4763 -0.4855

6, and 62 are found to be Isdependent of the value of-fro.
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"TABLE 4

DOMINANT STRESS SIN1IILARITIES FOR DELAMINATION
WITH CRACK-TIP CLOSURE IN 30*/90* (RAPHITE/EPOXY COPOSIT'i.

0.0 0.1 0.3 0.5 0.7

0.0 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5 -0.5010 -0.5031 -0.5051 -0.5072

0.1 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5036 -0.5046 -0.5067 -0.5087 -0.5108

0.3 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5108 -0.5118 -0.5138 -0.5159 -0.5179

0.5 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5179 -0.5189 -0.5210 -0.5230 -0.5251

0.7 -0.5 -0.5 -0.5 -0.5 -0.5

-0.5251 -0.5261 -0.5281 -0.5302 -0.5322
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7. LIST OF FIGURE CAPTIONS

Fig. 1 DelamLnations in a 1e0 2/e3/.../e3/62/0 11 Fiber-Reinforced Composite
Laminate.

Fig. 2 Coordinates and Geometry of a Delamination with Open Crack Surfaces
between 0. and 8m+ 1 Plies.

Fig. 3 Coordinates and Geometry of a Delamination with Finite Length of
Crack-Surface Closure between Om and 8m+ I Plies.
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APPENDIX 1

Expression# for coefficients Rik(*) in Eqs. 15 and 16 are as follows:

H1k = (Uksino + coa*) 2 , Hk, -nV(Mkslno + cos#),

H3k - -(uksino + Cos4)(ukcoS* - sin#), 114k - (kcoas# - sln#)2 , (A-1)

a 5k , nk( ukcos - sine), H 6k a PkCOS# + qkoiln.

H7k - -Pksin + qkcos*, *8k -

where uk and % are defined in Eqs. 11, 12 and 13, and Pk, qk and ti are

complex constants related to laminar elastic constants I by

'k 11 k 12 1%+ 5'k- 6k

k a I 14pk + t24/uak - 44 n k/k + Ak - %6

aI


